(Thanks to Beth Simon for pointing this out to me!) A new paper from Carl Wieman reviewing the literature on science education is always worth reading, but the one linked below is particularly useful to us in computer science. One of the issues that Carl addresses in this paper is whether competitions and other informal science learning efforts really do help with student learning. We do have a lot of different kind of competitions in computing education, from the First Robotics league to theUSA Computing Olympiad. His finding (quoted below): “there is little evidence that such programs ultimately succeed, and some limited evidence to the contrary.”
We use competitions in “Georgia Computes!” but for a very different purpose, not considered in Carl’s analysis below. As he points out later in the article, most efforts at improving teacher quality through in-service workshops fail because the teachers don’t have enough STEM knowledge to begin with, and content knowledge precedes pedagogical content knowledge. What Barbara Ericson has found is that competitions inspire the teachers to learn more. Competitions inspire students, but even more, teachers are inspired to learn in order to support their students. When we have Alice or Scratch competitions, teachers start showing up for our Alice and Scratch professional development, because they want to learn in order to help their students. While the impact of the competitions on the students might be short-lived, I would love to see some measure of the longer-term impact on the teachers.
Competitions and other informal science programs Attempting to separate the inspiration from the learning. Motivation in its entirety, including the elements of inspiration, is such fundamental requirement for learning that any approach that separates it from any aspect the learning process is doomed to be ineffective. Unfortunately, a large number of government and private programs that support the many science and engineering competitions and out-of-school programs assume that they are separable. The assumption of such programs is that by inspiring children through competitions or other enrichment experiences, they will then thrive in formal school experiences that provide little motivation or inspiration and still go on to achieve STEM success. Given the questionable assumptions about the learning process that underlie these programs, we should not be surprised that there is little evidence that such programs ultimately succeed, and some limited evidence to the contrary. The past 20 years have seen an explosion in the number of participants in engineering-oriented competitions such as First Robotics and others, while the fraction of the population getting college degrees in engineering has remained constant. A study by Rena Subotnik and colleagues that tracked high-school Westinghouse (now Intel) talent search winners, an extraordinarily elite group already deeply immersed in science, found that a substantial fraction, including nearly half of the women, had switched out of science within a few years, largely because of their experiences in the formal education system. It is not that such enrichment experiences are bad, just that they are inherently limited in their effectiveness. Programs that introduce these motivational elements as an integral part of every aspect of the STEM learning process, particularly in formal schooling, would probably be more effective.
Deepa Singh
Business Developer
Web Site:-http://www.gyapti.com
Blog:- http://gyapti.blogspot.com
Email Id:-deepa.singh@soarlogic.com
No comments:
Post a Comment